Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase.
نویسندگان
چکیده
In the present study we have used beef heart submitochondrial preparations (BH-SMP) to demonstrate that a component of mitochondrial Complex I, probably the NADH dehydrogenase flavin, is the mitochondrial site of anthracycline reduction. During forward electron transport, the anthracyclines doxorubicin (Adriamycin) and daunorubicin acted as one-electron acceptors for BH-SMP (i.e. were reduced to semiquinone radical species) only when NADH was used as substrate; succinate and ascorbate were without effect. Inhibitor experiments (rotenone, amytal, piericidin A) indicated that the anthracycline reduction site lies on the substrate side of ubiquinone. Doxorubicin and daunorubicin semiquinone radicals were readily detected by ESR spectroscopy. Doxorubicin and daunorubicin semiquinone radicals (g congruent to 2.004, signal width congruent to 4.5 G) reacted avidly with molecular oxygen, presumably to produce O2-, to complete the redox cycle. The identification of Complex I as the site of anthracycline reduction was confirmed by studies of ATP-energized reverse electron transport using succinate or ascorbate as substrates, in the presence of antimycin A or KCN respiratory blocks. Doxorubicin and daunorubicin inhibited the reduction of NAD+ to NADH during reverse electron transport. Furthermore, during reverse electron transport in the absence of added NAD+, doxorubicin and daunorubicin addition caused oxygen consumption due to reduction of molecular oxygen (to O2-) by the anthracycline semiquinone radicals. With succinate as electron source both thenoyltrifluoroacetone (an inhibitor of Complex II) and rotenone blocked oxygen consumption, but with ascorbate as electron source only rotenone was an effective inhibitor. NADH oxidation by doxorubicin during BH-SMP forward electron transport had a KM of 99 microM and a Vmax of 30 nmol X min-1 X mg-1 (at pH 7.4 and 23 degrees C); values for daunorubicin were 71 microM and 37 nmol X min-1 X mg-1. Oxygen consumption at pH 7.2 and 37 degrees C exhibited KM values of 65 microM for doxorubicin and 47 microM for daunorubicin, and Vmax values of 116 nmol X min-1 X mg-1 for doxorubicin and 114 nmol X min-1 X mg-1 for daunorubicin. In marked contrast with these results, 5-iminodaunodrubicin (a new anthracycline with diminished cardiotoxic potential) exhibited little or no tendency to undergo reduction, or to redox cycle with BH-SMP. Redox cycling of anthracyclines by mitochondrial NADH dehydrogenase is shown, in the accompanying paper (Doroshow, J. H., and Davies, K. J. A. (1986) J. Biol. Chem. 261, 3068-3074), to generate O2-, H2O2, and OH which may underlie the cardiotoxicity of these antitumor agents.
منابع مشابه
Redox Cycling of Anthracyclines by Cardiac Mitochondria
In the accompanying paper (Davies, K. J. A., and Doroshow, J. A. (1986) J. Biol. Chern. 261, 30603067), we have demonstrated that anthracycline antibiotics are reduced to the semiquinone form at Complex I of the mitochondrial electron transport chain. In the experiments presented in this study we examined the effects of doxorubicin (Adriamycin), daunorubicin, and related quinonoid anticancer ag...
متن کاملEffect of anthracycline antibiotics on oxygen radical formation in rat heart.
This investigation examined the effect of the anthracycline antitumor agents on reactive oxygen metabolism in rat heart. Oxygen radical production by doxorubicin, daunorubicin, and various anthracycline analogues was determined in heart homogenate, sarcoplasmic reticulum, mitochondria, and cytosol, the major sites of cardiac damage by the anthracycline drugs. Superoxide production in heart sarc...
متن کاملAnthracycline Antibiotic-stimulated Superoxide, Hydrogen Peroxide, and Hydroxyl Radical Production by NADH Dehydrogenase1
This study investigated the effect of the anthracycline anti biotics on oxygen radical metabolism by cardiac mitochondria! reduced nicotinamide adenine dinucleotide (NADH) dehydrogenase [NADH:(acceptor)oxidoreductase, EC 1.6.99.3], Superoxide formation by NADH dehydrogenase after anthracycline treatment appeared to follow saturation kinetics with an apparent Km of 167.3, 73.3, 64.0, or 47.6 (iM...
متن کاملThe exogenous NADH dehydrogenase of heart mitochondria is the key enzyme responsible for selective cardiotoxicity of anthracyclines.
The molecular mechanism of the anthracycline-dependent development of cardiotoxicity is still far from being clear. However, it is generally accepted, that mitochondria play a significant role in triggering this organ specific injury. The results presented in this study demonstrate that, in contrast to liver mitochondria, isolated heart mitochondria shuttle single electrons to adriamycin, givin...
متن کاملAnthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase.
This study investigated the effect of the anthracycline antibiotics on oxygen radical metabolism by cardiac mitochondrial reduced nicotinamide adenine dinucleotide (NADH) dehydrogenase [NADH:(acceptor) oxidoreductase, EC 1.6.99.3]. Superoxide formation by NADH dehydrogenase after anthracycline treatment appeared to follow saturation kinetics with an apparent Km of 167.3, 73.3, 64.0, or 47.6 mic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 261 7 شماره
صفحات -
تاریخ انتشار 1986